Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood): applications to tomography

نویسنده

  • Jeffrey A. Fessler
چکیده

Many estimators in signal processing problems are defined implicitly as the maximum of some objective function. Examples of implicitly defined estimators include maximum likelihood, penalized likelihood, maximum a posteriori, and nonlinear least squares estimation. For such estimators, exact analytical expressions for the mean and variance are usually unavailable. Therefore, investigators usually resort to numerical simulations to examine the properties of the mean and variance of such estimators. This paper describes approximate expressions for the mean and variance of implicitly defined estimators of unconstrained continuous parameters. We derive the approximations using the implicit function theorem, the Taylor expansion, and the chain rule. The expressions are defined solely in terms of the partial derivatives of whatever objective function one uses for estimation. As illustrations, we demonstrate that the approximations work well in two tomographic imaging applications with Poisson statistics. We also describe a "plug-in" approximation that provides a remarkably accurate estimate of variability even from a single noisy Poisson sinogram measurement. The approximations should be useful in a wide range of estimation problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean and Variance of Implicitly Defined Biased Estimators (Such as Penalized Maximum Likelihood): Ap - Image Processing, IEEE Transactions on

Many estimators in signal processing problems are defined implicitly as the maximum of some objective function. Examples of implicitly defined estimators include maximum likelihood, penalized likelihood, maximum a posteriori, and nonlinear least squares estimation. For such estimators, exact analytical expressions for the mean and variance are usually unavailable. Therefore, investigators usual...

متن کامل

Rethinking Biased Estimation: Improving Maximum Likelihood and the Cramér-Rao Bound

One of the prime goals of statistical estimation theory is the development of performance bounds when estimating parameters of interest in a given model, as well as constructing estimators that achieve these limits. When the parameters to be estimated are deterministic, a popular approach is to bound the mean-squared error (MSE) achievable within the class of unbiased estimators. Although it is...

متن کامل

Confidence Sets Based on Penalized Maximum Likelihood Estimators

Confidence intervals based on penalized maximum likelihood estimators such as the LASSO, adaptive LASSO, and hard-thresholding are analyzed. In the known-variance case, the finite-sample coverage properties of such intervals are determined and it is shown that symmetric intervals are the shortest. The length of the shortest intervals based on the hard-thresholding estimator is larger than the l...

متن کامل

Penalized Maximum Likelihood Estimator for Skew Normal Mixtures

Skew normal mixture models provide a more flexible framework than the popular normal mixtures for modelling heterogeneous data with asymmetric behaviors. Due to the unboundedness of likelihood function and the divergency of shape parameters, the maximum likelihood estimators of the parameters of interest are often not well defined, leading to dissatisfactory inferential process. We put forward ...

متن کامل

Comparison of Different Estimation Methods for Linear Mixed Models and Generalized Linear Mixed Models

Linear mixed models (LMM) and generalized linear mixed models (GLMM) are widely used in regression analyses. With the variance structure dependent on the random effects with their variance components, the parameter estimation of LMMs is more complicated than linear models (LM). Generally, we use maximum likelihood estimation (MLE) together with some procedure such as derivative free optimizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on image processing : a publication of the IEEE Signal Processing Society

دوره 5 3  شماره 

صفحات  -

تاریخ انتشار 1996